Introduction to Statistical Data Analysis III

JULY 2011 Afsaneh Yazdani

Major branches of Statistics:

- Descriptive Statistics
- Inferential Statistics

Training Workshop on Statistical Data Analysis

8-21 July 2011

Preface

What is Inferential Statistics?

The objective is to make inferences about a population parameters based on information contained in a sample.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Preface

What is Inferential Statistics?

The objective is to make inferences about a population parameters based on information contained in a sample.

Mean, Median, Standard Deviation, Proportion

Training Workshop on Statistical Data Analysis

8-21 July 2011

Inferences about Population Parameters

What is Inferential Statistics?

Statistical inference-making procedures differ from ordinary procedures in that we not only make an inference but also provide a measure of how good that inference is.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Inferences about Population Parameters

What is Inferential Statistics?

Methods for making inferences about parameters fall into two categories:

- Estimating the population parameter
- Hypothesis Testing about a population parameter

Training Workshop on Statistical Data Analysis

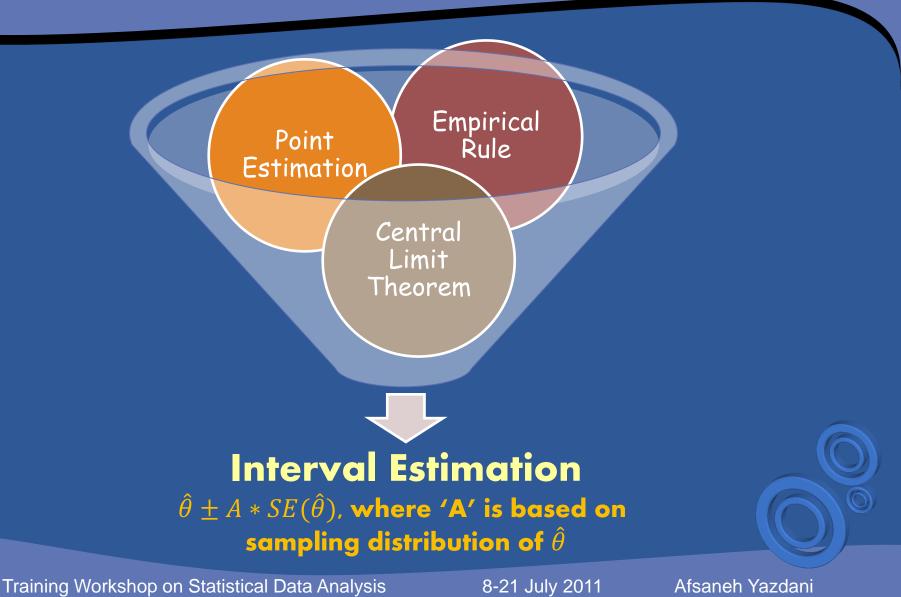
8-21 July 2011

Point Estimation

The first step in statistical inference is **Point Estimation'**, in which we compute a single value (statistic) from the sample data to estimate a population parameter.

Training Workshop on Statistical Data Analysis

8-21 July 2011



Estimation of '\mu':

- Point Estimation: Sample Mean \overline{y}

Training Workshop on Statistical Data Analysis

8-21 July 2011

Estimation of '\mu':

- **Point Estimation:** Sample Mean \overline{y}
- Interval Estimation:

Training Workshop on Statistical Data Analysis

8-21 July 2011

Estimation of '\mu':

- Point Estimation: Sample Mean \overline{y}
- Interval Estimation:

For large 'n', \overline{y} is approximately normally distributed with mean ' μ ' and standard error $\frac{\sigma}{\sqrt{n}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Estimation of '\mu':

- Point Estimation: Sample Mean \overline{y}
- Interval Estimation: $(\overline{y} 1.96\frac{\sigma}{\sqrt{n}}, \overline{y} + 1.96\frac{\sigma}{\sqrt{n}})$ with level of confidence 95% when σ is known

Training Workshop on Statistical Data Analysis

8-21 July 2011

Estimation of '\mu':

- Point Estimation: Sample Mean \overline{y}
- Interval Estimation: $(\overline{y} 1.96\frac{\sigma}{\sqrt{n}}, \overline{y} + 1.96\frac{\sigma}{\sqrt{n}})$

with level of confidence 95% when σ is known

In 95% of the times in repeated sampling, the interval contains the mean 'µ'

Training Workshop on Statistical Data Analysis

8-21 July 2011

Estimation of '\mu':

- Point Estimation: Sample Mean \overline{y}
- Interval Estimation: $(\overline{y} 2.09\frac{s}{\sqrt{n}}, \overline{y} + 2.09\frac{s}{\sqrt{n}})$ with level of confidence 95% when σ is unknown

Training Workshop on Statistical Data Analysis

8-21 July 2011

Estimation of '\mu':

- Point Estimation: Sample Mean \overline{y}
- Interval Estimation: $(\overline{y} 2.09\frac{s}{\sqrt{n}}, \overline{y} + 2.09\frac{s}{\sqrt{n}})$

when σ is unknown

Is good approximation if population distribution is **not too non-normal** and sample size is **large** enough

Training Workshop on Statistical Data Analysis

8-21 July 2011

100 $(1 - \alpha)$ % confidence Interval for ' μ ' (' σ ' known) when sampling from a normal population or 'n' large

$$(\overline{y} - z_{rac{lpha}{2}} rac{ec{s}}{\sqrt{n}} \ , \overline{y} + z_{rac{lpha}{2}} rac{ec{s}}{\sqrt{n}})$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

$100(1 - \alpha)\%$ confidence Interval for ' μ ' (' σ ' unknown) when sampling from a normal population or 'n' large

$$(\ \overline{y} - t_{rac{\alpha}{2}} rac{\mathbf{s}}{\sqrt{n}} \ , \overline{y} + t_{rac{\alpha}{2}} rac{\mathbf{s}}{\sqrt{n}})$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Goodness of inference for interval estimation:

Confidence coefficient
 Width of the confidence interval

Training Workshop on Statistical Data Analysis

8-21 July 2011

Goodness of inference for interval estimation:

Confidence coefficient
Width of the confidence interval

Training Workshop on Statistical Data Analysis

8-21 July 2011

Afsaneh Yazdani

Higher

Goodness of inference for interval estimation:

Confidence coefficient
Width of the confidence interval

Training Workshop on Statistical Data Analysis

8-21 July 2011

Afsaneh Yazdani

Higher

Smaller

Sample Size Required for a $100(1 - \alpha)\%$ Confidence Interval for μ of the Form $\overline{y} \pm E$

$$n = \frac{\left(\frac{Z\alpha}{2}\right)^2 \sigma^2}{E^2}$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Sample Size Required for a $100(1 - \alpha)\%$ Confidence Interval for μ of the Form $\overline{y} \pm E$

$$n = \frac{\left(\frac{Z\alpha}{2}\right)^2 \sigma^2}{E^2} \circ \bigcirc \bigcirc$$

Estimate using information from prior survey

Training Workshop on Statistical Data Analysis

8-21 July 2011

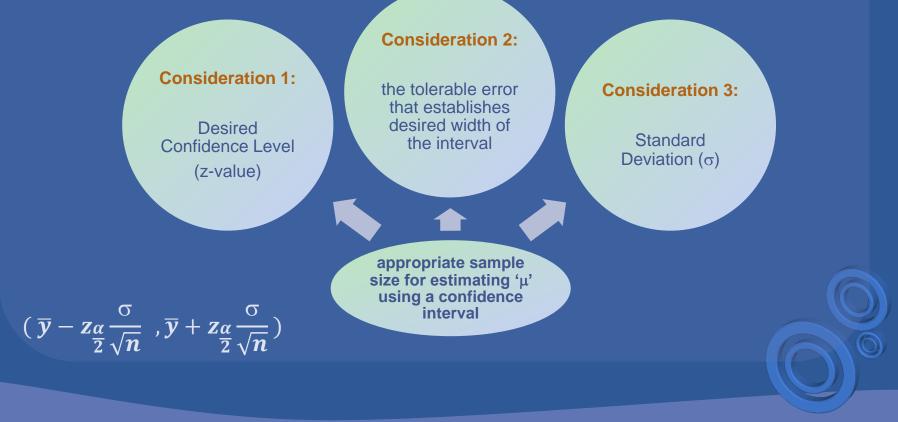
Sample Size Required for a $100(1 - \alpha)\%$ Confidence Interval for μ of the Form $\overline{y} \pm E$

$$n = \frac{\left(\frac{Z\alpha}{2}\right)^2 \sigma^2}{E^2} \circ O \qquad \text{Estimate using} \\ \mathbf{s} = \frac{\operatorname{range}}{4}$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Sample Size for Estimation of ' μ ':



Training Workshop on Statistical Data Analysis

8-21 July 2011

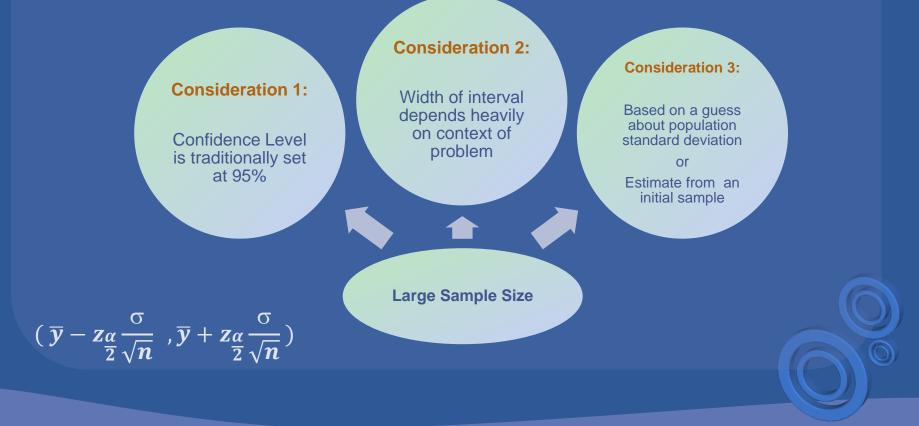
Sample Size for Estimation of ' μ ':



Training Workshop on Statistical Data Analysis

8-21 July 2011

Sample Size for Estimation of ' μ ':



Training Workshop on Statistical Data Analysis

8-21 July 2011

Sample Size for Estimation of ' μ ':

desired accuracy of the sample statistic as an estimate of the population parameter

required time and cost to achieve this degree of accuracy

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests

Using sampled data from the population, we are simply attempting to determine the value of the parameter.

In hypothesis testing, there is a idea about the value of the population parameter.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests

A statistical test is based on the concept of proof and composed of five parts:

- Ha: Research Hypothesis (Alternative Hypothesis)
- H₀: Null Hypothesis
- Test Statistic
- Rejection Region
- Check assumptions and draw conclusions

Training Workshop on Statistical Data Analysis

8-21 July 2011

Guidelines for Determining H_0 and H_a in Statistical Tests

- H_0 : the statement that parameter equals a specific value
- H_a : the statement that researcher is attempting to support or detect using the data
- The null hypothesis is presumed correct unless there is strong evidence in the data that supports the research hypothesis.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Test Statistic

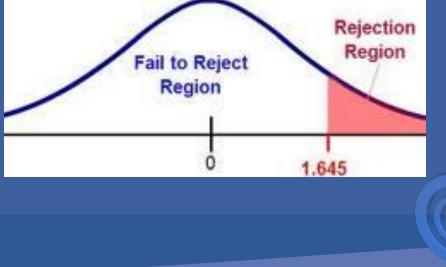
The quantity computed from the sample data, that helps to decide whether or not the data support the research hypothesis.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Rejection Region

The rejection region (based on the sampling distribution) contains the values of test statistic that support the research hypothesis and contradict the null hypothesis.



Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests

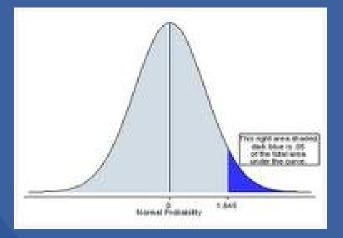
- One-Tailed Test
- Two-Tailed Test

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests

- One-Tailed Test



The rejection region is located in only one tail of the sampling distribution of test statistic

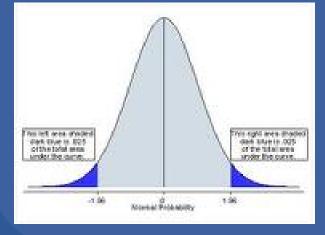
 $\begin{array}{l} H_a: \ \theta < \theta_0 \ \mathrm{Or} \\ H_a: \ \theta > \theta_0 \end{array}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests

- Two-Tailed Test



The rejection region is located in both tails of the sampling distribution of test statistic

 $H_a: \theta \neq \theta_0$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests

- Type I Error

- Type II Error

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests

- Type I Error

- Type II Error

Rejecting the null hypothesis when it is true. The probability of a Type I error is denoted by 'α'.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests

- Type I Error

- Type II Error

Accepting the null
hypothesis when it is false.
The probability of a Type II
error is denoted by 'β'.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests

		Null Hypothesis	
		True	False
Decision Reject Accept	Type Ι α	Correct (1-α)	
	Accept	Correct (1-β)	Туре II β

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests

		Null Hypothesis	
		True	False
Decision Reject Accept	Type I α	Correct (1-α)	
	Accept	Correct (1-β)	Type II β

The probabilities associated with Type I and Type II errors are inversely related. For a fixed sample size '*n*', when ' α ' decreases ' β ' will increase and vice versa

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests

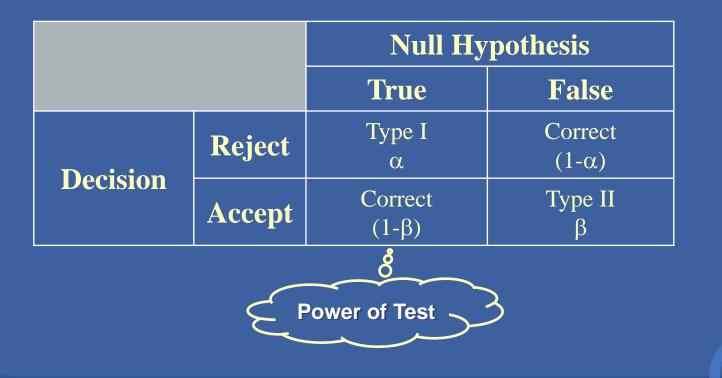
		Null Hypothesis	
		True	False
Decision Reject Accept	Type Ι α	Correct (1-α)	
	Accept	Correct (1-β)	Type II β

Usually 'α' is specified to locate the **Rejection Region**

Training Workshop on Statistical Data Analysis

8-21 July 2011

Errors in Statistical Tests



Training Workshop on Statistical Data Analysis

8-21 July 2011

Effectiveness of a statistical test is measured by:

Magnitudes of Type I Error and Type II Error

Training Workshop on Statistical Data Analysis

8-21 July 2011

Effectiveness of a statistical test is measured by:

For a fixed ' α ', as the sample size increases, ' β ' decreases

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests (Drawing Conclusion)

Traditional Approach:

- Using Statistic Test, two types of errors, their probability α , β

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests

Traditional Approach:

- Using Statistic Test, two types of errors, their probability α , β

The problem with this approach is that if other researchers want to apply the results of your study using a different value for ' α ' then they must compute a new rejection region.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests – Alternative Approach

Using Level of Significance/P-Value

Smallest size of ' α ' at which H₀ can be rejected, based on the observed value of the test statistic.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests – Alternative Approach

Using Level of Significance/P-Value

Smallest size of ' α ' at which H₀ can be rejected, based on the observed value of the test statistic.

The probability of observing a sample outcome more contradictory to H_0 than the observed sample result.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests – Alternative Approach

Using Level of Significance/P-Value

The weight of evidence for rejecting the null hypothesis.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests – Alternative Approach

Using Level of Significance/P-Value The weight of evidence for rejecting the null hypothesis

The smaller the value of this probability, the heavier the weight of the sample evidence against H₀.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Tests – Alternative Approach Decision Rule for Hypothesis Testing Using P-Value

$P - Value \leq \alpha$	• Reject H ₀
$P - Value > \alpha$	• Fail to Reject H ₀

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population mean ' μ '

('o' is known, when sampling from a normal population or 'n' large)

Test Statistic:
$$z = \frac{\overline{y} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$\begin{cases} H_0 \colon \mu \leq \mu_0 \\ H_a \colon \mu > \mu_0 \end{cases}$	• Reject H_0 if $z \ge z_{\alpha}$	
$\begin{cases} H_0 \colon \mu \geq \mu_0 \\ H_a \colon \mu < \mu_0 \end{cases}$	• Reject H_0 if $z \le -z_{\alpha}$	
$\begin{cases} H_0 \colon \mu = \mu_0 \\ H_a \colon \mu \neq \mu_0 \end{cases}$	• Reject H_0 if $ z \ge z_{\frac{\alpha}{2}}$	

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population mean ' μ '

('o' is known, when sampling from a normal population or 'n' large)

Power of the test:

One-Tailed
Test•
$$1 - \beta(\mu_a) = 1 - Pr(z \le z_\alpha - \frac{|\mu_0 - \mu_a|}{\frac{\sigma}{\sqrt{n}}})$$
Two-Tailed
Test• $1 - \beta(\mu_a) \approx 1 - Pr(z \le z_\frac{\alpha}{2} - \frac{|\mu_0 - \mu_a|}{\frac{\sigma}{\sqrt{n}}})$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population mean ' μ '

('o' is known, when sampling from a normal population or 'n' large)

$\begin{cases} H_0: \mu \leq \mu_0 \\ H_a: \mu > \mu_0 \end{cases}$	• P-Value: $\Pr(z \ge computed z)$	
$\begin{cases} H_0: \mu \geq \mu_0 \\ H_a: \mu < \mu_0 \end{cases}$	• P-Value: $\Pr(z \leq computed z)$	
$\begin{cases} H_0: \mu = \mu_0 \\ H_a: \mu \neq \mu_0 \end{cases}$	• P-Value: $2Pr(z \ge computed z)$	

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population mean ' μ '

(' σ ' is unknown, when sampling from a normal population or 'n' large)

'est Statistic:	$\mathbf{T} = \frac{\overline{y} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t(n-1)$
$\begin{cases} H_0: \mu \leq \mu_0 \\ H_a: \mu > \mu_0 \end{cases}$	• Reject H_0 if $t \ge t_{\alpha}$
$\begin{cases} H_0: \mu \geq \mu_0 \\ H_a: \mu < \mu_0 \end{cases}$	• Reject H_0 if $t \leq -t_{\alpha}$
$(\mathbf{H}_{0}: \mathbf{\mu} = \mathbf{\mu}_{0})$	• Point H if $ t > t_{\pi}$

Training Workshop on Statistical Data Analysis

 $H_a: \mu \neq \mu_0$

8-21 July 2011

Statistical Test for population mean ' μ '

(' σ ' is unknown, when sampling from a normal population or 'n' large)

$\begin{cases} H_0: \mu \leq \mu_0 \\ H_a: \mu > \mu_0 \end{cases}$	• P-Value: $\Pr(t \ge computed \ t)$	
$\begin{cases} H_0: \mu \geq \mu_0 \\ H_a: \mu < \mu_0 \end{cases}$	• P-Value: $\Pr(t \leq computed \ t)$	
$\begin{cases} H_0: \mu = \mu_0 \\ H_a: \mu \neq \mu_0 \end{cases}$	• P-Value: $2Pr(t \ge computed t)$	

Training Workshop on Statistical Data Analysis

8-21 July 2011

Non-normal distribution of population

'2' ISSUES to consider:

- Skewed Distribution
- Heavy-tailed Distribution

Training Workshop on Statistical Data Analysis

8-21 July 2011

Non-normal distribution of population

'2' ISSUES to consider:

- Skewed Distribution
- Heavy-tailed Distribution

Tests of Hypothesis tend to have smaller 'α' than specified level, so test has lower power

Training Workshop on Statistical Data Analysis

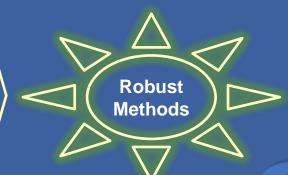
8-21 July 2011

Non-normal distribution of population

'2' ISSUES to consider:

- Skewed Distribution
- Heavy-tailed Distribution

Tests of Hypothesis tend to have smaller 'α' than specified level, so test has lower power



Training Workshop on Statistical Data Analysis

8-21 July 2011

Inferences about Median

When the population distribution is "highly skewed" or "very heavily tailed" or "sample size is small", median is more appropriate than the mean as a representation of the center of the population.

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population median (Sign Test)

Test Statistic: $W_i = y_i - M_0$, $B = \text{No. of Positive } W_i s$ $B \sim Binom(n, \pi)$

$\begin{cases} \mathbf{H}_0 : M \le M_0 \\ \mathbf{H}_a : M > M_0 \end{cases}$	• Reject H_0 if $B \ge n - C_{\alpha(1),n}$
$\begin{cases} \mathbf{H}_0 : M \ge M_0 \\ \mathbf{H}_a : M < M_0 \end{cases}$	• Reject H_0 if $B \leq C_{\alpha(1),n}$
$\begin{cases} \mathbf{H}_0: M = M_0 \\ \mathbf{H}_a: M \neq M_0 \end{cases}$	• Reject H_0 if $B \le C_{\alpha(2),n}$ or $B \ge n - C_{\alpha(2),n}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population median (Approximation)

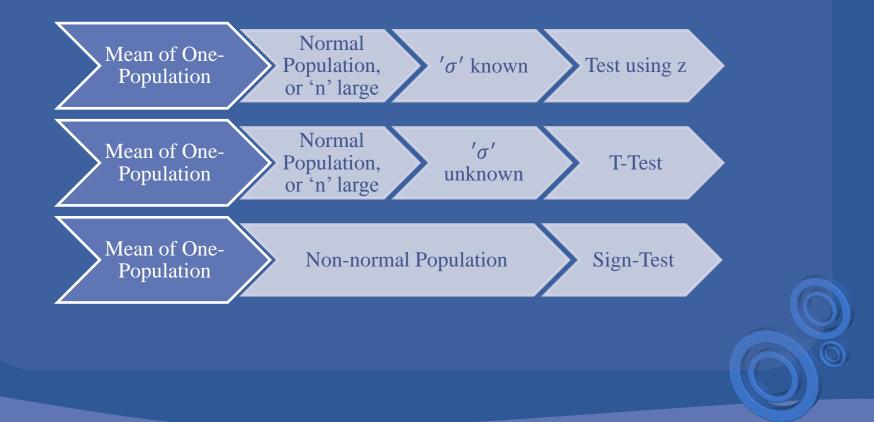
Test Statistic: $B_{st} = \frac{B^{-n}/2}{\sqrt{n}/4}, \quad B_{st} \sim N(0, 1)$

$\begin{cases} \mathbf{H}_0 : M \le M_0 \\ \mathbf{H}_a : M > M_0 \end{cases}$	• Reject H_0 if $B_{st} \ge z_{\alpha}$ with P-value $Pr(z \ge B_{st})$
$\begin{cases} \mathbf{H}_0 : M \ge M_0 \\ \mathbf{H}_a : M < M_0 \end{cases}$	• Reject H_0 if $B_{st} \le z_{\alpha}$ with P-value $Pr(z \le B_{st})$
$\begin{cases} \mathbf{H}_0: \boldsymbol{M} = \boldsymbol{M}_0\\ \mathbf{H}_a: \boldsymbol{M} \neq \boldsymbol{M}_0 \end{cases}$	• Reject H ₀ if $ B_{st} \ge z_{\frac{\alpha}{2}}$ with P-value $2Pr(z \ge B_{st})$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for Mean (one-population)



Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for population Variance (Normal Population)

Test Statistic:	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi^2(n-1), \ s^2 = \frac{\sum_{i=1}^n (n-1)}{n}$	$\frac{(\overline{y}_i - \overline{y})^2}{-1}$
$\begin{cases} H_0: \sigma^2 \leq \sigma_0^2 \\ H_a: \sigma^2 > \sigma_0^2 \end{cases}$	• Reject H_0 if $\chi^2 > \chi^2_{U,\alpha}$	ļ
$\begin{cases} H_0: \sigma^2 \geq \sigma_0^2 \\ H_a: \sigma^2 < \sigma_0^2 \end{cases}$	• Reject H_0 if $\chi^2 < \chi^2_{L,\alpha}$	
$\begin{cases} H_0: \sigma^2 = \sigma_0^2 \\ H_a: \sigma^2 \neq \sigma_0^2 \end{cases}$	• Reject H ₀ if $\chi^2 > \chi^2_{U,\frac{\alpha}{2}}$ or $\chi^2 > \chi^2_{L,\frac{\alpha}{2}}$	

Training Workshop on Statistical Data Analysis

8-21 July 2011

Inferences about Population Parameters

100 $(1 - \alpha)$ % confidence Interval for ' σ^2 ' (or σ)

$$\frac{(n-1)s^2}{\chi_U^2} < \sigma^2 < \frac{(n-1)s^2}{\chi_L^2}$$
$$\frac{(n-1)s^2}{\chi_U^2} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_L^2}}$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

The inferences we have made so far have concerned a parameter of a single population. Quite often we are faced with an inference involving a comparison of parameters of different populations

Training Workshop on Statistical Data Analysis

8-21 July 2011

Theorem

If two independent random variables y_1 and y_2 are normally distributed with means and variances (μ_1, σ_1^2) and (μ_2, σ_2^2) respectively, then

$$(y_1 - y_2) \sim N\left((\mu_1 - \mu_2), \sqrt{\sigma_1^2 + \sigma_2^2}\right)$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Sampling Distribution for $\overline{y}_1 - \overline{y}_2$

Two independent large samples

$$(\overline{y}_1 - \overline{y}_2) \sim N\left((\mu_1 - \mu_2), \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}\right)$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for '
$$\mu_1 - \mu_2$$
'

(Independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 = \sigma_2^2$)

Test Statistic:

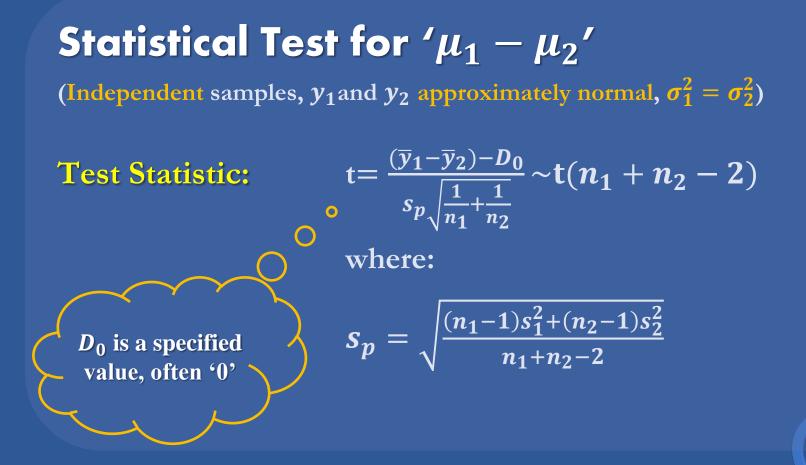
$$t = \frac{(\overline{y}_1 - \overline{y}_2) - D_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

where:

$$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

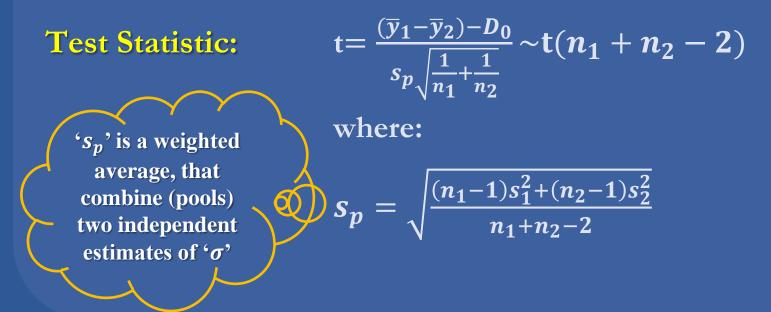


Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for '
$$\mu_1 - \mu_2$$
'

(Independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 = \sigma_2^2$)



Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for '
$$\mu_1 - \mu_2$$
'

(Independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 = \sigma_2^2$)

Test Statistic:

$$t = \frac{(\bar{y}_1 - \bar{y}_2) - D_0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t(n_1 + n_2 - 2)$$

$\begin{cases} H_0: \mu_1 - \mu_2 \le D_0 \\ H_a: \mu_1 - \mu_2 > D_0 \end{cases}$	• Reject H_0 if $t \ge t_{\alpha}$
$\begin{cases} H_0: \mu_1 - \mu_2 \ge D_0 \\ H_a: \mu_1 - \mu_2 < D_0 \end{cases}$	• Reject H_0 if $t \leq -t_{\alpha}$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_a: \mu_1 - \mu_2 \neq D_0 \end{cases}$	• Reject H_0 if $ t \ge t_{\frac{\alpha}{2}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

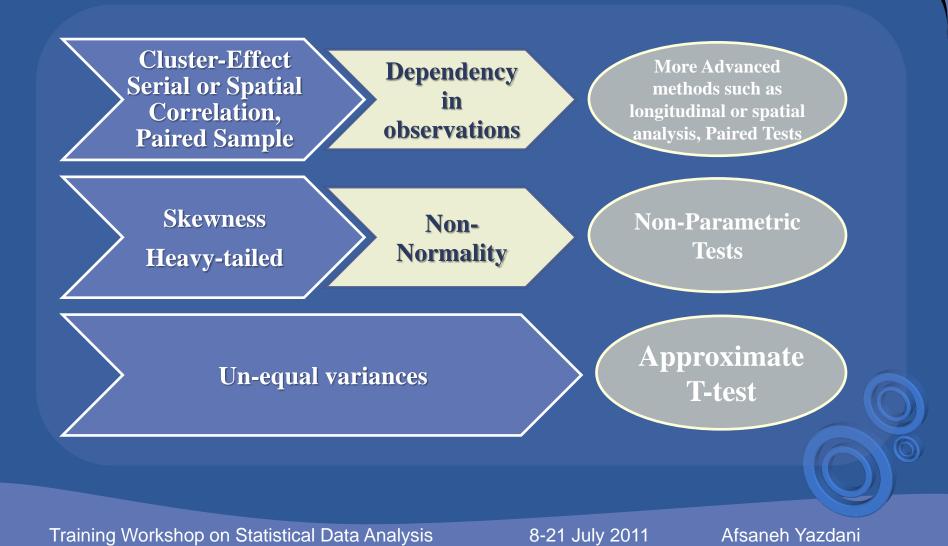
$$100(1 - \alpha)\% \text{ confidence Interval for}$$

$$\mu_1 - \mu_2,$$
Independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 = \sigma_2^2$)

$$(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$

Training Workshop on Statistical Data Analysis

8-21 July 2011



Statistical Test for ' $\mu_1 - \mu_2$ '

(Independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 \neq \sigma_2^2$)

Test Statistic:

$$t' = \frac{(\overline{y}_1 - \overline{y}_2) - D_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \dot{\sim} t(df)$$

where:

$$df = \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2(n_1 - 1) + c^2(n_2 - 1)}$$
 and $c = \frac{\frac{s_1^2}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' $\mu_1 - \mu_2$ ' (Independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 \neq \sigma_2^2$)

Test Statistic: $t' \sim t(df)$

$\begin{cases} H_0: \mu_1 - \mu_2 \le D_0 \\ H_a: \mu_1 - \mu_2 > D_0 \end{cases}$	• Reject H_0 if $t' \ge t_{\alpha}$
$ \begin{cases} \mathbf{H}_{0}: \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} \geq \boldsymbol{D}_{0} \\ \mathbf{H}_{a}: \boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{2} < \boldsymbol{D}_{0} \end{cases} $	• Reject H_0 if $t' \leq -t_{\alpha}$
$\begin{cases} H_0: \mu_1 - \mu_2 = D_0 \\ H_a: \mu_1 - \mu_2 \neq D_0 \end{cases}$	• Reject H_0 if $ t' \ge t_{\frac{\alpha}{2}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

100
$$(1 - \alpha)$$
% confidence Interval for
' $\mu_1 - \mu_2$ '
independent samples, y_1 and y_2 approximately normal, $\sigma_1^2 \neq \sigma_2^2$)
 $(\overline{y}_1 - \overline{y}_2) \pm t'_{\alpha} \sqrt{\frac{s_1^2}{2} + \frac{s_2^2}{n_2}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' $\mu_1 - \mu_2$ ' Independent Samples, Wilcoxon Rank Sum Test

Sort the data and replace the data value with its rank
 Make the Test Statistic:

- when $n_1, n_2 \leq 10$ then T=sum of the ranks in sample 1

- when $n_1, n_2 > 10$ then $z = \frac{T - \mu_T}{\sigma_T}$

$$\mu_T = \frac{n_1(n_1+n_2+1)}{2}$$
, and $\sigma_T = \sqrt{\frac{n_1n_2}{12}(n_1+n_2+1)}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' $\mu_1 - \mu_2$ ' Independent Samples, Wilcoxon Rank Sum Test

Sort the data and replace the data value with its rank
 Make the Test Statistic:

- when $n_1, n_2 \leq 10$ then T=sum of the ranks in sample 1

- when
$$\mathbf{n}_1$$
, $\mathbf{n}_2 > 10$ then $\mathbf{z} = \frac{T - \mu_T}{\sigma_T}$ Normal Approximation $\mu_T = \frac{n_1(n_1 + n_2 + 1)}{2}$, and $\sigma_T = \sqrt{\frac{n_1 n_2}{12}(n_1 + n_2 + 1)}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' $\mu_1 - \mu_2$ ' Independent Samples, Wilcoxon Rank Sum Test

Sort the data and replace the data value with its rank
 Make the Test Statistic:

- when
$$n_1$$
, $n_2 \leq 10$ then T=sum of the

- when n_1 , $n_2 > 10$ then $z = \frac{T - \mu_T}{\sigma_T}$

Provided there are no tied ranks

$$u_T = \frac{n_1(n_1+n_2+1)}{2}$$
, and $\sigma_T = \sqrt{\frac{n_1n_2}{12}(n_1+n_2+1)}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' $\mu_1 - \mu_2$ ' Independent Samples, Wilcoxon Rank Sum Test $z = \frac{T - \mu_T}{\sigma_T}$ **Test Statistic:** H₀: Two populations are identical H_a : Population 1 is shifted to Reject H_0 if $z \ge z_\alpha$ the right of population 2 H_a : Population 1 is shifted to • Reject H_0 if $z \leq -z_{\alpha}$ the left of population 2 H_a : Population 1 and 2 are • Reject H_0 if $|z| \ge z_{\underline{\alpha}}$ shifted from each other

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' μ_d '

(Paired samples, $y_1 - y_2$ approximately normal)

Test Statistic:	$\mathbf{t} = \frac{\overline{d} - D_0}{\frac{s_d}{\sqrt{n}}} \sim \mathbf{t}(n-1)$
$\begin{cases} \mathbf{H}_0: \boldsymbol{\mu}_d \leq \boldsymbol{D}_0 \\ \mathbf{H}_a: \boldsymbol{\mu}_d > \boldsymbol{D}_0 \end{cases}$	• Reject H_0 if $t \ge t_{\alpha}$
$\begin{cases} \mathbf{H}_0: \boldsymbol{\mu}_d \geq \boldsymbol{D}_0 \\ \mathbf{H}_a: \boldsymbol{\mu}_d < \boldsymbol{D}_0 \end{cases}$	• Reject H_0 if $t \leq -t_{\alpha}$
$\begin{cases} \mathbf{H}_0: \boldsymbol{\mu}_d = \boldsymbol{D}_0 \\ \mathbf{H}_a: \boldsymbol{\mu}_d \neq \boldsymbol{D}_0 \end{cases}$	• Reject H_0 if $ t \ge t_{\frac{\alpha}{2}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

100 $(1 - \alpha)$ % confidence Interval for ' μ_d ' (Paired samples, $y_1 - y_2$ approximately normal)

$$\overline{d} \pm t_{rac{\alpha}{2}} rac{s_d}{\sqrt{n}}$$

Training Workshop on Statistical Data Analysis

8-21 July 2011

Statistical Test for ' $\mu_1 - \mu_2$ ' Paired Samples, Wilcoxon Signed-Rank Test

- 1- Calculate differences of the pairs, subtract them from D_0 , keep non-zero differences (n), sort the absolute values in increasing order and rank them.
- 2- Make the Test Statistic:

- when $n \leq 50$ then ' T_- ', ' T_+ ', or ' $min(T_-, T_+)$ ' depending on H_a

- when
$$n > 50$$
 then $Z = \frac{T - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

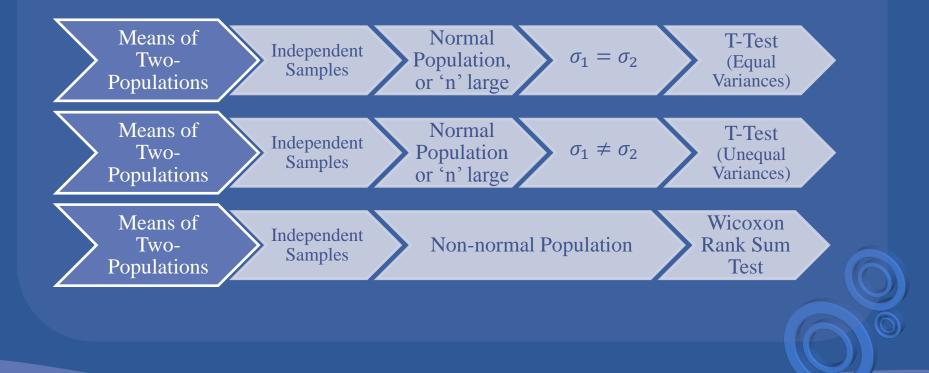
Statistical Test for ' $\mu_1 - \mu_2$ ' Paired Samples, Wilcoxon Signed-Rank Test

$\begin{cases} \mathbf{H}_0: \boldsymbol{M} = \boldsymbol{D}_0 \\ \mathbf{H}_a: \boldsymbol{M} > \boldsymbol{D}_0 \end{cases}$	• Reject H_0 if $z < -z_{\alpha}$
$\begin{cases} \mathbf{H}_0 : \boldsymbol{M} = \boldsymbol{D}_0 \\ \mathbf{H}_a : \boldsymbol{M} < \boldsymbol{D}_0 \end{cases}$	• Reject H_0 if $z < -z_{\alpha}$
$\begin{cases} \mathbf{H_0} : \boldsymbol{M} = \boldsymbol{D_0} \\ \mathbf{H_a} : \boldsymbol{M} \neq \boldsymbol{D_0} \end{cases}$	• Reject H ₀ if $ \mathbf{z} < -\mathbf{z}_{\frac{\alpha}{2}}$

Training Workshop on Statistical Data Analysis

8-21 July 2011

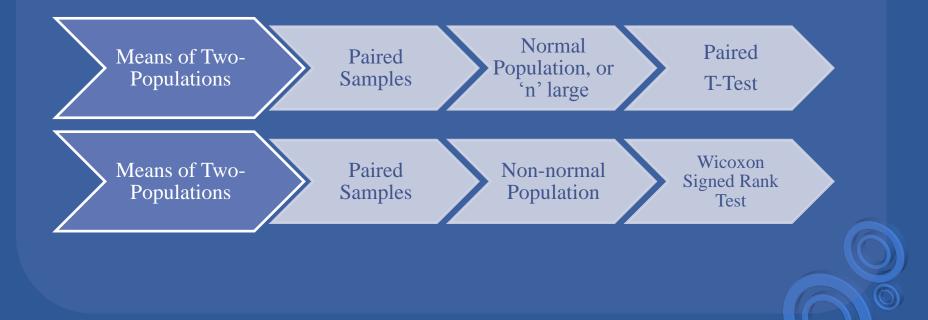
Statistical Test for Mean (Two-population)



Training Workshop on Statistical Data Analysis

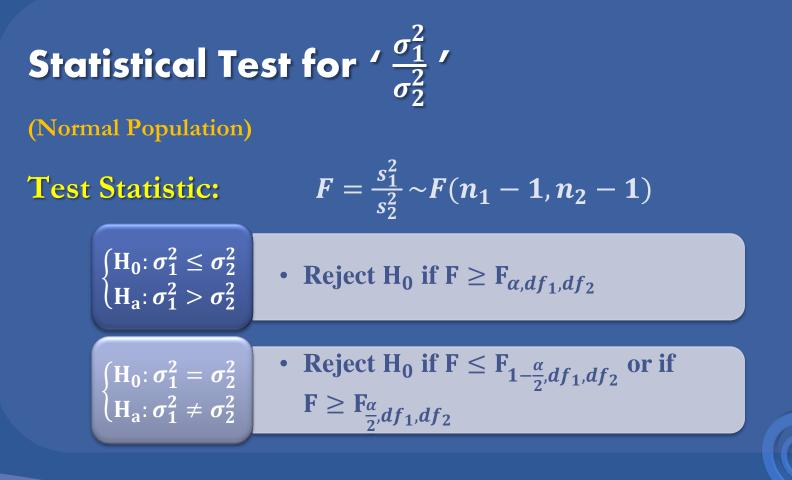
8-21 July 2011

Statistical Test for Mean (Two-population)



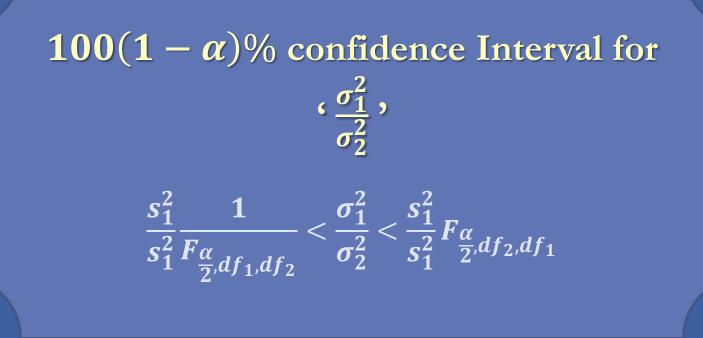
Training Workshop on Statistical Data Analysis

8-21 July 2011



Training Workshop on Statistical Data Analysis

8-21 July 2011



Training Workshop on Statistical Data Analysis

8-21 July 2011